MC34063 Один из самых распространенных ШИМ (ЧИМ) контроллеров и небольшой экскурс в принципы работы DC-DC конвертеров

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Понять как работает микросхема проще всего по структурной схеме. Разберем по пунктам:

Читайте также:  Конструкция, виды и порядок подключения поплавка к насосу

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

Производители этой микросхемы (например Texas Instruments) в своих datasheets пишут, что её работа основана на широтно-импульсной модуляции (PWM). Даже если и можно назвать то, что делает MC34063 ШИМом, то очень уж примитивным.

  • Самый главный недостаток MC34063 – отсутствие встроенного усилителя ошибки. Поэтому пульсации выходного напряжения получаются достаточно большими. И не просто так в рекомендациях по применению предлагается на выход преобразователя устанавливать дополнительный LC-фильтр.
  • Второй недостаток – не простое подключение внешнего МДП транзистора.

Мое же мнение, что если требуется низкий уровень пульсаций, либо большая мощность преобразователя, то лучше использовать другие микросхемы – с внутренним усилителем ошибки и с драйвером работающим с полевыми транзисторами.

MC34063 для нетребовательных к пульсациям и мощности применений!







Схема на MC34063A повышения напряжения с внешним транзистором

В представленной схеме использован полевой транзистор. Но в ней допущена ошибка. На биполярном транзисторе необходимо поменять местами К-Э. А ниже представлена схема из описания. Внешний транзистор выбирается исходя из тока коммутации и выходной мощности.

Схема включения на понижение напряжения и стабилизации

Виды схем подключения
Из схемы видно, что ток в выходном транзисторе ограничивается резистором R1, а времязадающим компонентов для установки необходимой частоты преобразования является конденсатор C2. Индуктивность L1 накапливает в себе энергию при открытом транзисторе, а по его закрытию разряжается через диод на выходной конденсатор. Коэффициент преобразования зависит от соотношения сопротивлений резисторов R3 и R2.

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Простая схема подключения

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением. Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности. А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей. А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1. Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию. Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания. Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы. Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов. Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.

Читайте также:  Регистры отопления: методы изготовления, виды, расчет

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Детали преобразователя MC34063

Резисторы, используемые в преобразователе, — любые, мощностью от 0,125 Вт до 0,5 Вт, типа МЛТ или С2-29, неполярные конденсаторы — типа КД, КМ, К10-17 и т.п. Электролитические конденсаторы — типа К50-29, К50-35 или подобные. Индуктивность дросселя L1 – от 120 до 180 мкГн, мощностью не менее 200 мВт. В качестве дросселя L2 использована интегральная индуктивность типа ЕС24 или аналогичная. Индуктивность этого дросселя должна быть в районе от 10 до ЗЗ мкГн.

(994,1 KiB, скачано: 10 561)

(1,1 MiB, скачано: 4 493)

Другие режимы работы

Преобразователь на mc34063
Кроме режимов работы на понижение и стабилизацию, также довольно часто применяется повышающий. Схема подключения отличается тем, что индуктивность находится не на выходе. Через нее протекает ток в нагрузку при закрытом ключе, который отпираясь, подаёт на нижний вывод индуктивности отрицательное напряжение.

Диод, в свою очередь, обеспечивает разряд индуктивности на нагрузку в одном направлении. Поэтому при открытом ключе на нагрузке формируется 12 В от источника питания и максимальный ток, а при закрытом на выходном конденсаторе оно повышается до 28В. КПД схемы на повышение составляет как минимум 83%. Схемной особенностью при работе в таком режиме является плавное включение выходного транзистора, что обеспечивается ограничением тока базы посредством дополнительного резистора, подключенного к 8 выводу МС. Тактовая частота работы преобразователя задаётся конденсатором небольшой ёмкости, преимущественно 470пФ, при этом она составляет 100кГц.

Выходное напряжение определяется по следующей формуле:

Uвых=1,25*R3 *(R2+R3)

Используя вышеуказанную схему включения микросхемы МС34063А, можно изготовить повышающий преобразователь напряжения с питанием от USB до 9, 12 и более вольт в зависимости от параметров резистора R3. Чтобы провести детальный расчет характеристик устройства, можно воспользоваться специальным калькулятором. Если R2 составляет 2,4кОм, а R3 15кОм, то схема будет преобразовать 5В в 12В.

Аналоги

Как и у любой интегральной схемы ШИМ-контроллер mc34063 имеются качественные аналоги, одним из которых является отечественная микросхема КР1156ЕУ5. Она имеет хорошие рабочие характеристики, которые станут основой для разработки качественных функциональных устройств с полезными возможностями.

Параметры микросхемы

MC34063 реализован в стандартном DIP-8 корпусе с 8 выводами. Также имеются компоненты для поверхностного монтажа без конкурса. ШИМ-контроллер MC34063 изготовлен достаточно качественно, о чем говорят немалые параметры, позволяющие создавать многофункциональные устройства с широкими возможностями. К основным рабочим характеристикам относятся:

  • Диапазон напряжений, которыми может манипулировать контроллер — от 3 до 40В.
  • Максимальный коммутируемый ток на выходе биполярного транзистора — 1,5А.
  • Напряжение питания — от 3 до 50В.
  • Ток коллектора выходного транзистора — 100мА.
  • Максимальная рассеиваемая мощность — 1,25Вт.

Выбирая за основу этот ШИМ-контроллер, вы обеспечите себя надёжным практическим макетом, который даст возможность качественно изучить особенности работы импульсных устройств и преобразователей напряжения.

Применяется микросхема во многих устройствах:

  • понижающие источники питания;
  • повышающие преобразователи;
  • зарядные устройства для телефонов;
  • драйверы для светодиодов и другие.

Драйвер светодиодов

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Как подключить простое устройство

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2. Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования. В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений. В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.

Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Типовая схема включения

Чтобы запустить контроллер достаточно обеспечить несколько условий, реализовать которые можно, имея в кармане пару конденсаторов, индуктивность, диод и несколько резисторов. Схема подключения контроллера зависит от требований, которые будут предъявлены к ней. Если необходимо изготовить ШИМ-стабилизатор, что довольно часто применяется на практике. Схема работает исключительно на понижение выходного напряжения, которое зависит от отношения сопротивлений, включенных в обратной связи. Выходное напряжение формируется делителем в соотношении 1:3 и поступает на вход внутреннего компаратора.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Модуль лабораторного блока питания на MC34063

Модуль выполнен на широко распространенных электронных компонентах зарубежного производства и практически не содержит дефицитных деталей. В качестве ШИ-контроллера используется микросхема MC34063 (U1). Управляющий импульс отрицательной полярности с выводов U1 (1, 8)
подается на преобразователь уровня, выполненный на транзисторе Q2, с коллектора которого, преобразованный по уровню управляющий импульс подается на входы эмиттерных повторителей (Q1, Q6), обеспечивающих управление затворами мощных полевых транзисторов (Q3, Q4). При спаде импульса и нахождении его полки в области отрицательных значений относительно баз транзисторов Q1, Q6, транзисторы эти заперты и по цепи: общий провод-выводы 8,1 (U1)-R4-ЭК (Q2)-D1(D2)-R2 (R3), — происходит подача отрицательного напряжения на затворы Q3, Q4. Q3, Q4 отпираются и находятся в этом состоянии до того, пока напряжение на «прямом» входе элемента U3.2 не станет выше напряжения на инверсном входе этого же элемента. В этом случае, соответственно, на выходе элемента U3.2 пропорционально (на разницу уровней прямого и инверсного входов кратно коэффициенту усиления ОУ) повысится напряжение, обуславливающее увеличение напряжения и на входе ОС микросхемы U1 (вывод 5). Выходной транзистор U1 (выводы 2-1,8) закроется и обесточит цепь подачи напряжения на затворы силовых ключей (Q3, Q4). Эмиттерные повторители (Q1, Q6) в этот момент откроются током через резистор R1, разряжая затворные емкости силовых ключей, обеспечивая быстрое запирание Q3, Q4 до момента, пока напряжение на прямом входе элемента U3.2 не станет ниже значения на инверсном входе этого же элемента. После чего цикл коммутации силовых ключей повторится. Таким образом производится регулирование напряжения на выходе модуля, где значение выходного напряжения определяется опорным значением напряжения, регулируемым с помощью потенциометра PR2. Регулировка ограничения тока производится потенциометром PR3, с движка которого снимается установочное значение опорного напряжения и подается на прямой вход элемента U3.1. Как только падение напряжения на инверсном входе U3.1 начнет превалировать над опорным значением, напряжение на выходе этого элемента уменьшится пропорционально (с учетом коэффициента усиления ОУ, определяемого отношением резисторов R16, R18) в соответствии с разницей значений на прямом и инверсном входах, увеличивая разницу напряжений на входах U3.2, тем самым увеличивая уровень напряжения на входе ОС U1 (вывод 5) и запирание силовых ключей.

Включение микросхемы U1 — практически стандартное, но снабженное преобразователем уровня на транзисторе Q2 для возможности работы модуля с относительно высокими входными напряжениями, непозволительными для самой MC34063. Микросхема в этом случае может быть запитана напряжением 5-15В и работает в облегченных режимах, как по напряжению, так и по току. Вывод 7 микросхемы не задействован, но может быть использован для плавного запуска модуля или как порт для выключения модуля, подключения дополнительных защитных схем. Стабилизатор питания U1 выполнен на транзисторе Q5, стабилитроне VZ2, ток стабилизации через который определяется резистором R11. R10 — балластный и ограничивает мощность, рассеиваемую на транзисторе Q5. Питание сдвоенного ОУ осуществляется стабилизатором U4. Его выходное напряжение используется и в качестве опорного.

Выходное напряжение модуля определяется шириной импульсов управления и параметрами элементов «шлюза» (дроссель L1, конденсатор C11). Ширина импульсов управления зависит от разницы уровней напряжения на входах элементов U3. Ток зарядки конденсатора C11 определяется индуктивностью дросселя L1 и временем открытых ключей Q3, Q4. Разряд определяется сопротивлением нагрузки. Следует так же учесть, что частота коммутации ключей так же будет зависеть от нагрузки и параметров «шлюза». Процесс работы связки КЛЮЧ-ДРОССЕЛЬ-КОНДЕНСАТОР, понятно, описан здесь максимально поверхностно, но достаточно подробно подобные процессы описаны в литературе о силовой электронике. Расчет дросселя не производился, а режимы нормальной работы модуля подбирались под выбранные элементы «шлюза» изменением частоты генератора U1. Индуктивность дросселя варьировалась от 22 до 47uH (микроГенри), а при испытании подбирались готовые дроссели с необходимыми массогабаритными показателями сердечников и достаточным сечением обмоточного провода. Большинство таких дросселей применяется в компьютерных БП. От параметров дросселя будет зависеть во многом КПД модуля, нагрев силовых ключей и самого дросселя. Подробно о расчете дросселя в ШИ-преобразователях с фиксированной частотой можно прочесть здесь: https://www.compel.ru/lib/ne/2007/8/7-sovetyi-po-proektirovaniyu-ponizhayushhih-preobrazovateley.

Для модуля разработана и изготовлена двусторонняя печатная плата под SMD-компоненты размером 53Х50мм. Силовые ключи Q3, Q4 и транзистор стабилизатора Q5 расположены в ряд для возможности установки на общий радиатор подходящих размеров с площадью охлаждения не менее 50см2, если модуль предназначен для долговременной или непрерывной эксплуатации. Максимальные размеры дросселя (проекции) для размещения на плате могут составлять 16Х24мм. Плата снабжена установочными местами под ножевые клеммы (входные и выходные напряжения) дублирующими и отверстиями для провода диаметром до 1,2мм. Регулировочные потенциометры (ток, напряжение) для установки на плату использованы вертикальные многооборотные, но могут быть использованы при выносе за пределы платы (проводниками минимальной длины) и другие типы потенциометров. Резистор R10 (мощностью не менее 2Вт) следует распаивать на высоте не менее 5мм от платы. Резистор R4 может иметь мощность 0,25-0,5Вт. Резистор R20 составной и дополнительным резисторам на плате присвоены позиционные обозначения R201, R202, R203. Сборка и наладка не представляет трудностей и модуль начинает работать сразу после сборки.

При налаживании, подключив вольтметр, необходимо определить диапазон регулировки выходного напряжения вращением штифта потенциометра PR2 в ту или иную стороны, подбирая необходимый диапазон регулирования резисторами R15, соотношением резисторов делителя ОС R12, R13. Диапазон регулировки ограничения тока подбирается резистором R19.

Схема модуля принципиальная электрическая

Вид платы модуля сверху

Вид платы модуля снизу

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
R2, R3 Резистор 47 2 Поиск в магазине Отрон В блокнот
R1, R5 Резистор 1k8 2 Поиск в магазине Отрон В блокнот
R4, R6, R13 Резистор 620 3 Поиск в магазине Отрон В блокнот
R9, R14, R15, R17, R19 Резистор 2k2 5 Поиск в магазине Отрон В блокнот
R7, R16, R19 Резистор 91 кОм 3 Поиск в магазине Отрон В блокнот
R8 Резистор 3k9 1 Поиск в магазине Отрон В блокнот
R11 Резистор 4k7 1 Поиск в магазине Отрон В блокнот
R10 Резистор 100 1 Поиск в магазине Отрон В блокнот
R12 Резистор 9k1 1 Поиск в магазине Отрон В блокнот
R20 Резистор 0.05 4 Поиск в магазине Отрон В блокнот
PR2, PR3 Переменный резистор 10k 2 Поиск в магазине Отрон В блокнот
C1 Конденсатор 470 1 Поиск в магазине Отрон В блокнот
C5, C6 Конденсатор 1uF/50V 2 Поиск в магазине Отрон В блокнот
C13 Конденсатор 1uF/100V 1 Поиск в магазине Отрон В блокнот
C2, C11 Электролитический конденсатор 1000uF/100V 2 Поиск в магазине Отрон В блокнот
C4 Электролитический конденсатор 100uF/25V 1 Поиск в магазине Отрон В блокнот
C9 Электролитический конденсатор 47uF/25V 1 Поиск в магазине Отрон В блокнот
C12 Электролитический конденсатор 1uF 1 Поиск в магазине Отрон В блокнот
VZ1, VZ2 Стабилитрон 1N4744A 2 Поиск в магазине Отрон В блокнот
D3, D4 Диод SS510 2 Поиск в магазине Отрон В блокнот
D1, D2 Выпрямительный диод 1N4148 1 Поиск в магазине Отрон В блокнот
Q1, Q6 Биполярный транзистор MMBT5551 1 Поиск в магазине Отрон В блокнот
Q5 Биполярный транзистор TIP122 1 Поиск в магазине Отрон В блокнот
Q3, Q4 MOSFET-транзистор IRF9540 1 Поиск в магазине Отрон В блокнот
U1 Микросхема MC34063 1 Поиск в магазине Отрон В блокнот
U3 Операционный усилитель LM358 1 Поиск в магазине Отрон В блокнот
U4 Микросхема 78L05 1 Поиск в магазине Отрон В блокнот
Добавить все

Расчет преобразователя на mc34063

MC34063 datasheet по-русски.

Рынок электроники сегодня предоставляет много вариантов микросхем для стабилизации и преобразования напряжения. Я остановлюсь на самом пожалуй распространенном контроллере серии 34063. Эта микросхема хороша тем что она доступна, на её базе легко изучить устройство и работу шим контроллеров. Сама микросхема копеечная так что если в ходе работы вы спалите пару штук, то будет не жалко. Для MC34063 есть в сети много удобных калькуляторов где легко рассчитать нужные параметры вашего устройства. У MC34063 масса аналогов, и даже есть отечественный — КР1156ЕУ5. Диапазон рабочих напряжений MC34063 от 3 до 40 вольт. Коммутируемый ток ключа MC34063 до 1.5 А. Данный контроллер почти так же популярен как таймер 555 серии. Собирая данное устройство вы получите массу опыта в налаживании подобных устройств и в дальнейшем перейдёте к более сложным схемам. Для запуска контроллера в работу потребуется сама микросхема MC34063, индуктивность, диод, пару конденсаторов на 100 — 500 мкф, и 3 — 4 резистора. Теперь о том как это всё работает: Смотрим на 1 схему step-down, это работает почти как обычный шим стабилизатор.

Данное включение MC34063 реализует только понижение входного напряжения !

[spoiler title=»Источники»]

  • https://ltruck-service.ru/detali/34063-datasheet.html
  • https://instrument.guru/elektronika/mc34063-shema-vklyucheniya-osobennosti-raboty.html
  • https://BurForum.ru/drugoe/34063-mikroshema.html

[/spoiler]