Сферы применения
Полезные качества варистора позволяет повсеместно применять его в работающих на электричестве приспособлениях, механизмах, электронике, микросхемах.
Устройство используют в мобильных телефонах, сетевых фильтрах, электромоторах, переключателях. Оно универсально, поскольку встречается в низко- и высоковольтных сетях, подходит для установок с любым током. Им снабжены качественные блоки питания.
Принцип действия
Отличительной особенностью устройства служит симметричная нелинейная вольт-амперная характеристика. В норме проходящий по нему ток крайне незначителен. Поэтому справедливо утверждать, что варистор фактически его не пропускает, являясь диэлектриком со свойством энергоемкости.
В стандартной ситуации переменный резистор выполняет роль изолятора. Однако при возросшем напряжении он становится проводящим электроэнергию элементом.
Сопротивление материала изменяется, и при его снижении сила тока во много раз возрастает.
Как только случается критичный скачок напряжения, полупроводник молниеносно сводит сопротивление к минимуму. Он преобразует электричество в тепло, а затем рассеивает его. Так приспособление путем удаления избыточной энергии защищает всю цепь и снимает с нее нагрузку, не давая перегореть.
Устройство является безынерционным. После возвращения напряжения к первоначальному значению сопротивляемость восстанавливается.
Упрощенно переменный резистор уместно сравнить со своего рода «клапаном», открывающимся на пике напряженности и не препятствующим прохождению тока, достаточного для снижения потенциала до требуемого.
При этом всплеске нагрузка падает на этот «клапан», сеть же остается в безопасности. При стабилизации ситуации он «закрывается», и далее функционирование продолжается в штатном порядке.
Диагностика
Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.
Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.
Что такое варистор и где применяется
Варистор – это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.
Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.
Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.
Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.
Характеристики и габаритные размеры
Одной из важнейших характеристик, указываемых не только в технической документации, но и входящей в обозначение и наносимой на корпус элемента, является классификационное напряжение. Распространено мнение, что эта величина является условной, и не несет практического характера. Это не так.
Характерные точки на ВАХ варистора.
Характеристика варистора в зоне защиты (зоне стабилизации) имеет наклон, и ток через него зависит от приложенного напряжения – чем больше напряжение. При определенном напряжении (которое называют напряжением открывания при постоянном токе) варистор начинает открываться, но происходит это постепенно. По мере открывания ток растет. Считается, что когда он достигнет уровня 1 мА, прибор полностью открылся, вышел на линейный участок характеристики и начал выполнять свою защитную функцию.
Так как варисторы часто применяются в цепях переменного тока, то напряжение открывания выражают в виде действующего (среднеквадратичного) значения напряжения – оно чаще применяется в качестве характеристики переменного напряжения. Этот параметр меньше напряжения открывания при постоянном токе примерно в 1,4 раза.
Также важными характеристиками являются максимальная мощность P (в ваттах) и поглощаемая энергия W (в джоулях). Первый параметр интуитивно понятен – это мощность, которую прибор способен рассеивать в открытом состоянии. А поглощаемая энергия характеризует время, в течение которого элемент может выдержать максимальную мощность. Этот период вычисляется, как t=W/P. Величина поглощаемой энергии определяется размером прибора, поэтому при наличии опыта можно достаточно точно определить эту характеристику на глаз (например, по диаметру для компонентов в дисковом исполнении)
Максимальное рабочее напряжение – граница, выше которой элемент выходит из строя. Параметры распространенных варисторов приведены в таблице.
TVR 10471 | 470 | 300 | 385 | 70 Дж | 10 |
TVR 14471 | 470 | 300 | 385 | 125 Дж | 14 |
14N431K | 430 | 275 | 350 | 132 Дж | 14 |
7N471K | 470 | 300 | 385 | 35 Дж | 7 |
14D471K | 470 | 300 | 385 | 125 Дж | 14 |
S10K275 | 430 | 275 | 350 | 43 Дж | 10 |
TVR 20471 | 470 | 300 | 385 | 220 Дж | 20 |
TVR 10431 | 430 | 275 | 350 | 65 Дж | 10 |
Проверка элемента
Зная, как работает варистор, можно легко проверить его на исправность. Существует три способа проверки данного компонента. Первый из них – самый простой, поскольку представляет собой визуальный осмотр (трещины, следы оплавления или вздутия сразу будут заметны). Если устройство запылено, рекомендуется очистить его от пыли. Второй способ потребует наличия и опыта работы с мультиметром, который должен показывать сопротивление ближе к бесконечности. Третий способ потребует прозвонить цепь, что потребует отпаять одну из ножек нелинейного резистора (рабочий варистор не пропустит ток). В случаях, когда маркировка на корпусе варистора стерта, поможет мегомметр.
Конструкция
Устройство компонента предельно простое. Внутри находится полупроводниковый материал (окись цинка или карбид кремния). Мелкодисперсное вещество подвергается прессовке и действию температуры (запекается), после чего заключается в изолирующую оболочку. Он имеет аксиальные выводы или SMD-корпус.
Внешне различают формы в виде:
- пленок;
- таблеток;
- стержней;
- бусинок;
- дисков.
Переходные формы волны переменного тока
Варисторы подключены в цепях через сеть питания либо между фазой и нейтралью, либо между фазами для работы от переменного тока, либо с положительного на отрицательный для работы от постоянного тока, и имеют номинальное напряжение, соответствующее их применению. Варистор также можно использовать для стабилизации напряжения постоянного тока и особенно для защиты электронных цепей от импульсов перенапряжения.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
Положительные стороны варисторов
К положительной стороне использование варисторов на работе или в быту является:
- возможность работы с устройством при больших нагрузках, связанных с высоким напряжением;
- надежная защита варистором прибора от перенапряжения;
- невысокая цена;
- обширная сфера применения;
- обеспечение надежной эксплуатации;
- понятная и простая технология применения.
Плюсы использования варистора
Варистор – он как автомат калашникова. Прост, надежен, дешев. И распространен повсеместно. Он всегда сработает и не подведет. Область его применения огромна. Как мы выше писали от 20кВ до 3В. Ну и про время срабатывания забывать не стоит. 25нс у среднего варистора – весьма неплохо. А есть экземпляры, со скоростью срабатывания ниже 0,5 не.
Но, как и у всего в этом мире, у варистора есть и недостатки.
К таковым относится низкочастотных шум во время работы, большая емкость варистора (от 70 до 3000 пФ) и склонность материалов варистора к устареванию.
Плюсы варистора превалируют над минусами. Именно поэтому он получил столь широкое распространение. Как и автомат калашникова.
Пример реализации защиты
На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).
Рисунок 4. Варистор в блоке питания АТХ
Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:
- первые три буквы обозначают тип, в нашем случае это серия TVR;
- последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
- далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10y, в нашем случае это 47*101, то есть 470 вольт;
- последняя буква указывает класс точности, «К» соответствует 10%.
Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.
Применение приборов
Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.
В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.
Схема 1 — Подключение варистора для сети 220В.
Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.
Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.
Виды
Все переменные резисторы подразделяются на 2 группы с единым механизмом действия.
Высоковольтные
Данные компоненты предназначены для цепей с током, не превышающим 20 киловольт, и устанавливаются в системах предохранения электрооборудования.
Низковольтные
Эти компоненты взаимодействуют с показателями до 200 вольт, подходят для электроники и прочих приборов с током не выше 1 ампера.
Параметры
Наиболее весомые показатели:
- Классификационное напряжение (Un). При нем сила тока составляет 1 мА. Превышение значения приводит к лавинообразному всплеску тока.
- Максимальное действующее напряжение (Um~). Предельное напряжение, при котором в устройстве начинает снижаться сопротивление.
- Максимальное постоянное напряжение (Um=).
- Номинальная рассеиваемая мощность (Р). Определяет, сколько энергии способен рассеять элемент при неизменности характеристик.
- Максимальная энергия импульса (W). Оценивается в джоулях, указывает на наибольшую энергию поглощения, рассеиваемую варистором при действии единичного импульса.
- Максимальный ток импульса (длительностью 20 мкс.)
- Емкость в закрытом состоянии (Со). Варистор в определенном смысле аналогичен конденсатору, поскольку электроды в нем разделены не проводящим ток материалом. В результате он имеет определенную электроемкость. Данное свойство имеет значение при использовании в цепях с высокой частотой.
- Допустимое отклонение от номинальной разницы потенциалов (в %).
- Время срабатывания, в течение которого варистор меняет статус с закрытого на открытый.
Маркировка
Первые 3 символа обозначают диаметр (например, 25D). Чем больше диаметр, тем больше способность рассеивать энергию. Следующие 3 цифры соответствуют классификационному напряжению. Возможны и иные способы маркировки, указывающие на производителя либо на какие-то особенности. Все компании маркируют продукт по-своему.
Самой применяемой отечественной моделью является К275 (действующее напряжение 275 вольт).
Схематическое обозначение
Графическое изображение выглядит как прямоугольник, перечеркнутый диагональной линией, иногда с буквой U. На плате элемент может иметь обозначение RU или VA.
Принцип работы варистора
Варистор работает следующим образом. Его сопротивление при работе в обычном режиме большое. При значительном повышении напряжения сопротивление варистора начинает снижаться. Таким образом, происходит регулировка и защита электронной цепи.
Следует учитывать, что при установке на входе в электроцепи варистор добавляет свою емкость к уже существующей емкости. Поэтому данную особенность важно учитывать при проектировании всей линии.
Варистор — что это такое, принцип работы, применение, обозначение на схемах
Поделиться с друзьями
0
Как быстро снять изоляцию с проводов
22.10.2021
by САМ Электрик ИНФО · Published 22.10.2021
· Last modified 03.11.2022

0
Преимущества аренды вилочного погрузчика
07.07.2022
by САМ Электрик ИНФО · Published 07.07.2022

0
Ошибки электриков
19.12.2021
by САМ Электрик ИНФО · Published 19.12.2021

0
Светодиодные светильники: типы, мощность, какие бывают
20.10.2022
by САМ Электрик ИНФО · Published 20.10.2022
· Last modified 03.11.2022

0
Как узнать, не майнят ли за вашим компьютером
25.02.2022
by САМ Электрик ИНФО · Published 25.02.2022

0
Как обжать витую пару без клещей
12.12.2021
by САМ Электрик ИНФО · Published 12.12.2021

0
Почему именно деревянная баня?
08.07.2022
by САМ Электрик ИНФО · Published 08.07.2022

0
Какой фирмы купить сварочный инвертор?
24.06.2022
by САМ Электрик ИНФО · Published 24.06.2022

0
Провод заземления: выбор и монтаж
Электропровода <хедер class="entry-хедер"> хедер>
Изготовление
Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.
Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.
Обозначение на схеме и варианты подключения варистора
На схемах варистор обычно обозначается, как обычный резистор, но с добавлением буквы U рядом с наклонной чертой. Эта черта и указывает в схемах на то, что данный элемент имеет зависимость сопротивления от напряжения в цепи. Также на электрической схеме этот элемент маркируется двумя буквами R и U с добавлением порядкового номера (RU1, RU2 … и т.д.).
Существует большое количество вариантов подключения варисторов, но общее для всех способов – это то, что данный компонент подключается параллельно цепи питания. Поэтому при отсутствии опасных значений импульсов напряжения, ток, который протекает через варистор имеет малую величину (ввиду больших значений сопротивления) и никак не влияет на работоспособность системы. При возникновении перенапряжения, варистор изменяет сопротивление до малых величин, нагрузка шунтируется, и поглощенная энергия рассеивается в окружающее пространство.
Свойства
Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.
Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:
λ=RRd=UIdUdI≈const{displaystyle lambda ={frac {R}{R_{d}}}={frac {U}{I}}:{frac {dU}{dI}}approx const},
где U — напряжение, I — ток варистора
Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.
Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.
Материалы варисторов
Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.
Способы проверки
Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.
Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.
Есть три способа проверить варистор быстро и просто:
- Визуальный осмотр.
- Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
- Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.
Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.
Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:
Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.
Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.
Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.
На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.
Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.
Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.
На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.
Читайте также: Как сделать флюгер: украшение дома и полезная конструкция своими руками
Источник: samelectrik.ru
Рекомендации к установке
Для начала работы с элементом необходимо проверить способность варистора к работе. Необходимо осмотреть его внешний вид на наличие сколов, трещин и опалений. Эти дефекты уже могут говорить о браке.
Если эти недостатки отсутствуют, то элемент необходимо проверить при помощи мультимера. Осмотр должен проходить в режиме максимального сопротивления, тогда возможно будет выявить факт рабочего/нерабочего состояния варистора.
Когда подтверждена работоспособность прибора, можно переходить к установке. Варистор параллельно включается защищаемому устройству.
Стоит учитывать, что при неправильной установке деталь может взорваться, поэтому варисторы последовательно необходимо монтировать с защищаемым устройством.
Советы по выбору
Описание варистора на сайте поможет подобрать оптимальный тип устройства для защиты электрооборудования от перегрузок. Для этого следует знать такие параметры, как мощность импульсов, образующихся при коммутации, а также величина сопротивления источника на входе. Для эффективной защиты рекомендуется выбирать устройство с напряжением, имеющим небольшой запас к номинальному.
Хоть время срабатывания варистора и является отличным значением, но в некоторых случаях оно оказывается недостаточным. В качестве альтернативы существует технология SMD-резисторов, время срабатывания которых варьируется от 0,5 наносекунд и выше.
color=»#ccc» size=»1″ style=»margin-bottom: 30px;»>
Cопротивление изоляции кабеля: нормы и таблица
Электропровода <хедер class="entry-хедер"> хедер>
СИП кабель: самонесущий изолированный провод
Провода и Кабели <хедер class="entry-хедер"> хедер>
Преимущества и недостатки
Плюсы
Достоинства обусловлены простотой, надежностью, демократичной ценой, широким спектром применения и способностью переносить интенсивные нагрузки. К преимуществам относят и скорость срабатывания (счет идет на наносекунды), а также обширный диапазон рабочих напряжений и опция отслеживания их перепадов.
Минусы
Недостатками можно считать:
- низкочастотный шум;
- изменение характеристик с течением времени или под влиянием температурных амплитуд (старение);
- большая емкость, отрицательно влияющая на функционирование;
- перегрев из-за продолжительного предельного напряжения.
Маркировка, основные характеристики и параметры
Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.
Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).
Читайте также: Принцип работы и основные характеристики стабилитрона
Основными характеристиками варисторов являются следующие параметры:
Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор (обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;
Максимально допустимое напряжение – диапазон напряжения (среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;
Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса (измеряется в Джоулях);
Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока (измеряется в Амперах);
Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте (падает до нуля, если к варистору приложен большой ток);
Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны (указывается в процентах).
Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое (обычно несколько десятков наносекунд).
Статическое сопротивление варистора
Тестер транзисторов / ESR-метр / генераторМногофункциональный прибор для проверки транзисторов, диодов, тиристоров…Подробнее
При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.
Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.
Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:
Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.
Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.
Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.
При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.
Проверка работоспособности
Оптимально подобранный варистор исправно выполняет свое предназначение. Прежде всего следует знать характеристики цепи, в которую ему предстоит включиться, и представлять параметры источника питания. Правильно подбирать варистор с напряжением, обладающим некоторым запасом.
Важно, чтобы скорость рассеивания тепла давала возможность как можно быстрее возвращаться в обычный режим. Для проверки используется тестер (мультиметр), который бывает цифровым или аналоговым.
Нужно внимательно осмотреть устройство. Так как через него проходит очень сильный ток по сравнению с током в защищаемой цепи, на корпусе можно обнаружить потемневшее покрытие, обгоревшие или со сколами участки. На плате можно заметить зоны потемнения. В этих случаях варистор подлежит обязательной замене.
Регулятор мощности для паяльника своими руками
приборы/инструменты <хедер class="entry-хедер"> хедер>
Подбор варистора
Чтобы правильно подобрать варистор для определенного устройства необходимо знать характеристики его источника питания: сопротивление и мощность импульсов переходных процессов. Максимально допустимое значение тока определяется в том числе длительностью его воздействия и количеством повторений, поэтому при установке варистора с заниженным значением пикового тока, он достаточно быстро выйдет из строя. Если говорить кратко, то для эффективной защиты прибора необходимо выбирать варистор с напряжением, имеющим небольшой запас к номинальному.
Также для безотказной работы такого электронного компонента очень важна скорость рассеивания поглощенной тепловой энергии и возможность быстро возвращаться в состояние нормальной работы.
Проверка варистора мультиметром, определяем работоспособность
Каждая радиодеталь в электрической схеме имеет свое предназначение. Одни меняют параметры, другие являются сигнализаторами состояния или исполнителями команд.
Есть радиоэлементы, отвечающие за безопасность и защиту (речь идет не о банальных предохранителях). Например, варистор, который резко меняет свои характеристики при скачках напряжения.
Это свойство используется в системах защиты блоков питания и коммутационных устройств. Кроме того, он используется в качестве простейшего фильтра импульсного напряжения. Деталь недорогая, но достаточно эффективная.
Если ваш удлинитель или электроприбор не выполняет свою функцию после скачка напряжения, не торопитесь вникать в устройство схемы. Иногда достаточно знать, как проверить варистор мультиметром.
Как проверить варистор?
Вот 3 способа, доступных практически каждому:
- Осмотр
- Проверить варистор мультиметром
- Прозвонить цепь.
Начнем с самого простого способа – посмотреть на варистор
Для доступа к нему придется разобрать бытовой прибор и очистить его от пыли. Тут вам понадобится отвертка и щеточка. Запыленность – основная проблема блоков питания.
Поврежденный варистор можно обнаружить по трещинам на корпусе, вздутиям, явным признакам воздействия высоких температур. (Как минимум немного оплавленный корпус, как максимум – следы короткого замыкания).
Варистор покрыт снаружи, как правило, керамикой или эпоксидным покрытием. При перегревании варистора – покрытие трескается.
Мультиметр
Проверить варистор мультиметром довольно просто. Выставляем на мультиметре предел измерения. Выкручиваем его на максимум, как правило это 2 мегаОма (2МОм, 2М, реже 2000К). При измерении, мультиметр должен показывать сопротивление ближе к бесконечности. Зачастую, он показывает 1-2 мегаома.
Касаться варистора руками при измерении нельзя! В таком случае мультиметр покажет вам сопротивление вашего тела, а не варистора.
Прозвон
При прозвоне придется отпаять одну из ножек варистора из цепи. Прозвон, следует осуществлять с разных направлений. Рабочий варистор не прозванивается, что понятно. Ток через него не идет. Сопротивление не позволяет.
Подключение
Способов много, их объединяет принцип параллельного подключения. Вне критичных всплесков протекающий ток ничтожно мал и не оказывает влияния, что обусловлено значительным сопротивлением.
Перенапряжение изменяет его вплоть до минимальных величин, нагрузка перераспределяется, а поглощенная энергия рассеивается в окружающее пространство.
Итак, назначение устройства заключается в обеспечении безопасности электроприборов с любыми видами тока. Функционирование основано на изменении сопротивления полупроводника под воздействием мощного напряжения.
Мировой тенденцией в дальнейшем усовершенствовании этих полезных приспособлений является повышение возможностей их быстродействия.
Применение в быту
Характеристики элемента позволяют применять его в устройствах, связанных с каналами связи, различными входами для оборудования, использовать варисторы для генераторов.
Они устанавливаются в сетевых фильтрах специальных удлинителей, а также в других качественных входных моделях для защиты. Элемент рекомендуется монтировать в китайскую технику во избежание быстрых поломок. Для обеспечения безопасности всего помещения варистор необходимо установить на дин-рейку.
Емкость варистора
Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.
При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.
Устройство
Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.
На рисунке ниже наглядно изображено внутреннее устройство варистора:
Варисторы «образуются», когда кристаллы карбида кремния или оксидов металлов вдавливаются в керамический материал.
[spoiler title=»Источники»]
- https://kladochka.ru/varistor
- https://grand-electro.ru/elektrooborudovanie/varistor.html
- https://Zapitka.ru/teoriya/chto-takoe-varistor-opisanie-i-printsip-raboty
- https://www.RadioElementy.ru/articles/varistor-ustroystvo-printsip-deystviya-i-primenenie/
- https://lightika.com/raznoe/varistor-princip-deystviya-proverka-i-podklyuchenie.html
- https://pauk.top/varistor-chto-eto-takoe.html
- https://www.RusElectronic.com/varistor/
- https://www.asutpp.ru/kak-proverit-varistor-multimetrom-poshagovaya-instrukciya.html
- https://samelektrikinfo.ru/chto-takoe-varistor.html
- https://svet202.ru/pribory/s10k275-harakteristiki.html
- https://separett.su/info/varistor-oboznachenie.html
- https://odinelectric.ru/equipment/electronic-components/chto-takoe-varistor
- https://www.joyta.ru/7117-varistor-princip-raboty-i-primenenie/
- https://kakrabotaet.ru/kak-eto-rabotaet/princzip-raboty-varistora-v-elektricheskoj-czepi/
[/spoiler]