Датчик холла назначение и принцип работы

Что такое датчик Холла

Магнитные датчики — это твердотельные устройства, которые генерируют электрические сигналы, пропорциональные приложенному к нему магнитному полю. Эти электрические сигналы затем дополнительно обрабатываются специальной электронной схемой пользователя для получения желаемого выхода.

В наши дни эти магнитные датчики способны реагировать на широкий спектр магнитных полей. Одним из таких устройств является датчик Холла, выход которого (напряжение) зависит от плотности магнитного поля.

Внешнее магнитное поле используется для активации этих датчиков эффекта Холла. Отслеживаемый магнитный поток фиксируется датчиком, когда его плотность за пределы определенного порога. При обнаружении датчик генерирует выходное напряжение, которое также известно как напряжение Холла.

Эти измерительные элементы пользуются большим спросом и имеют очень широкое применение, например датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и т. д.

Купить датчик вы можете в популярном китайском интернет магазине «АлиЭкспресс». Брали оттуда, все рабочие, советуем.

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток.  На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил?  Разность потенциалов на гранях А и C!  Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект  –  в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла. 

Это интересно: Резонанс токов и напряжений — условия возникновения и применение

Датчик Холла – принцип работы и назначение

В современных условиях происходит постоянное технологическое развитие датчиков Холла. Они отличаются надежностью, точностью и постоянством данных. Широкое распространение эти приборы получили в автомобилях и других транспортных средствах. Они обладают повышенной устойчивостью к агрессивным внешним воздействиям. Датчики Холла являются составной частью многих устройств, с помощью которых контролируется определенное состояние техники.

Во многих случаях этот прибор размещается в трамблере и отвечает за образование искры, то есть он используется вместо контактов. Нередко данный прибор применяется для слежения за током нагрузки. С его помощью производится отключение при возникновении токовых перегрузок. В случае перегревания датчика происходит срабатывание температурной защиты. Резкое изменение напряжения может иметь для устройства тяжелые последствия. Поэтому в последних моделях устанавливается внутренний диод, препятствующий обратному включению напряжения.

Датчик Холла до настоящего времени не смог заменить обычные механические переключатели. Однако в любом случае он имеет ряд значительных преимуществ. Основными из них являются отсутствие контактов, загрязнений, а также механических нагрузок. Поэтому часто можно встретить датчик Холла на скутере, применяемый в качестве составной части датчика зажигания.






Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Как работает датчик Холла

Во время своих исследований в 1879 году физик Холл выявил такой эффект, что если в магнитном поле находится пластина, на которую подается напряжение (ток протекает через пластину), тогда электроны в указанной пластине начинают отклоняться. Такое отклонение происходит перпендикулярно по отношению к тому направлению, которое имеет магнитный поток.

Также направление этого отклонения происходит в зависимости от той полярности, которую имеет магнитное поле. Получается, электроны будут иметь разную плотность на разных сторонах пластины, создавая разные потенциалы. Обнаруженное явление получило название эффект Холла.

Другими словами, Холл поместил прямоугольную полупроводниковую пластину в магнитное поле и на узкие грани такого полупроводника подал ток. В результате на широких гранях появилось напряжение. Дальнейшее развитие технологий позволило создать на основе обнаруженного эффекта компактное устройство-датчик. Главным преимуществом датчиков подобного рода выступает то, что частота срабатывания устройства не смещает момент измерения. Выходной сигнал от такого устройства всегда устойчивый, без всплесков.

Простейший датчик состоит из:

  • постоянного магнита;
  • лопасти ротора;
  • магнитопроводов;
  • пластикового корпуса;
  • электронной микросхемы;
  • контактов;

Работа устройства построена на следующей схеме: через зазор осуществляется проход металлической лопасти ротора, что позволяет шунтировать магнитный поток. Результатом становится нулевой показатель индукции на микросхеме. Выходной сигнал по отношению к массе практически равняется показателю напряжения питания.

Датчик Холла в системе зажигания является аналоговым преобразователем, который непосредственно коммутирует питание. 

Среди недостатков стоит выделить чувствительность устройства к электромагнитным помехам, которые могут возникнуть в цепи. Также наличие электронной схемы в устройстве датчика несколько снижает его надежность.

Основные сведения

Начнем с базовой информации: где находится датчик Холла, что это такое, для чего он нужен.  «Голый» датчик — это небольшой измеритель (сенсор, обнаружитель), почти всегда черный (цвет зависит от предпочтений производителя), размером в несколько миллиметров. Автомобильные изделия имеют сравнительно большой пластиковый защитный короб, «фишку» с кабелем с разъемом подключения.

Датчик Холла

Сенсор фаз осуществляет мониторинг магнитных полей, их параметров (напряженности), при этом выдает заданные алгоритмы работы (смыкание контактов и пр.).

Датчик Холла

Рассматриваемым сенсорам присвоили наименование от фамилии ученого Холла, открывшего, что разность потенциалов (холловского напряжения) возникает, если в поле помещают объекты с постоянными токами.

Датчик Холла

Автомобильный сенсор тока находится в трамблере — узле для подключения свечей, он скрыт пластиковой фишкой с тремя проводами и разъемом под них. На иных приборах он может размещаться где угодно. Обычно на печатных платах — это крошечная черная коробочка стандартно на 3, реже — на 4 ножках. Линейные Hall sensor напоминают микросхему. Изделие также определяют по маркировке, обозначения есть в справочниках радиодеталей, (распространенные S41, 41F, U18, 3144, 44E, 49E).

Датчик Холла

При токовом течении в одном направлении электроны отклоняются в проводниках, размещенных перпендикулярно к полю. Участки их имеют неравномерную плотность частиц, это и есть разность потенциалов, фиксируемая датчиком Холла. Становится возможным анализ напряжения под прямым углом к току.

Датчик Холла

Есть также Hall effect sensor упрощенный как, например, в смартфонах: только с функцией подтверждения наличия магнитных явлений, напряженность не анализируется. На базе узла, включающего датчик  и магнитомер, телефон снабжается опцией компаса.

Датчик Холла

Как функционирует

Принцип работы, использования датчика Холла:

  • Электроны при прохождении тока движутся по сенсору прямолинейно.
  • При воздействии поля частицы с зарядом отклоняются силой Лоренца по изогнутой траектории.
  • Отрицательно заряженные элементы, они же электроны, притягиваются на 1 сторону Hall sensor, а плюсовые (дырки) — к иной.
  • Описанное накопление по разным сегментам создает разное напряжение, это и есть разность потенциалов. Пропорциональность возникшего напряжения к электротоку и напряженности поля прямая. Эти окончательные явления и отслеживаются сенсором, принцип используется для определения положения подконтрольных им обслуживаемых объектов.

Датчик Холла

Где применяются

Датчики фаз начали устанавливаться в конструкции около 75 лет после их изобретения, когда появились доступные технологии создания полупроводниковых пленочных материалов.

Характерные области применение датчиков Холла:

  • первая область, где началось использование — машиностроение, для замеров углов распредвалов, коленвалов, фиксации искрения на узлах зажигания;
  • переключатели (бесконтактного типа), анализаторы уровня веществ, скорости вращения лопастей, приспособления дистанционного обнаружения токов;
  • сканирование магнитных обозначений;
  • как замена герконам (автоматические выключатели, смыкающие контакты посредством магнита). В этой сфере описываемые устройства наиболее распространенные из-за многочисленности приборов: микроэлектроника, техника от наушников до манипуляторов, клавиатур, в лифтах, охранном оснащении (двери, запорные элементы).

Датчики Холла в смартфонах

Мобильные гаджеты имеют в составе много функциональных блоков. Среди них есть вспомогательные датчики, одним из которых является датчик Холла. В современных устройствах связи такие датчики являются измерительными элементами, с помощью которых определяют мощность магнитного поля, его изменения. Они называются в честь ученого Холла.

Как работает магнитный чехол

Рынок изобилует самыми разными чехлами для смартфонов, но особым спросом всегда пользовались магнитные чехлы-книжки, которые автоматически отключают или активизируют экран смартфона, на примере Smart Case для iPad. Как это работает? Блокировка или активация дисплея происходит благодаря реакции датчика Холла в смартфоне на приближающийся магнит, запрятанный в крышке чехла. Когда вы открываете крышку чехла, то происходит снижение интенсивности излучения, поэтому экран включается.

Датчик Холла очень удобно работает с флип-чехлами, у которых есть небольшой вырез для управления плеером или для ответа на звонки. Благодаря такой фиче можно пользоваться отдельными функциями, не открывая чехол, например, просматривать уведомления из нашего Telegram-чата или смотреть время. Как это работает? Возможность наличия или отсутствия высокого магнитного поля позволяет смартфону оставлять экран активным или же подсвечивать только необходимую область дисплея. Кстати, сам магнит, установленный в чехле, не вредит смартфону.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.


Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила  эра цифровой электроники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика.  Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.


Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Это интересно: Как сэкономить на электрическом отоплении в частном доме и квартире — рассмотрим в общих чертах

Как заменить датчик своими руками?

Не у каждого автолюбителя есть время для ручного ремонта датчиков. Им проще купить новый и установить его вместо старого. Данная процедура производится таким образом:

  • В первую очередь нужно снять клеммы с аккумулятора;
  • Снимается распределитель, отсоединяется колодка с проводами;
  • Снимается крышка трамблера;
  • Перед тем, как полностью демонтировать устройство, важно запомнить, как был расположен сам распределитель. Необходимо совместить отметки ГРМ и коленвала;
  • Снимается вал распределителя;
  • Отсоединяется сам датчик холла;
  • На место старого датчика устанавливается новый;
  • Производится сборка блока в обратной последовательности.

Датчики последнего поколения отличаются большим рабочим ресурсом, поэтому частая замена устройства не требуется. При обслуживании системы зажигания необходимо также обращать внимание и не это следящее устройство.

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

линейный датчик холла
линейный датчик холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

линейный датчик холла график
линейный датчик холла график

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

токовые клещи датчик холла
токовые клещи датчик холла

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Виды устройств

Основной задачей этого прибора считается определение напряженности магнитного потока. Практически это сенсор определения значений магнитного поля. Существуют датчики двух видов:

  • цифровые;
  • аналоговые.

Цифровые приборы бывают биполярными и униполярными. Биполярные элементы работают в зависимости от полярности магнитного поля, то есть одна включает датчик, а вторая отключает.

Сфера применения датчика Холла

Униполярные приборы включаются при появлении любой полярности и отключаются по мере ее уменьшения. Цифровые сенсоры измеряют индукцию и появление соответствующего напряжения, то есть наличие или отсутствие магнитного поля.

Прибор показывает единицу, когда индукция поля достигает пороговое значение. До этого момента сенсор будет показывать ноль. Такой датчик не сможет определить наличие магнитного поля со слабой индукцией. Кроме того, на точность показаний будет влиять дистанция до измеряемого объекта.

Типы датчиков Холла

Датчики эффекта Холла можно разделить на два типа:

  • на основании вывода;
  • на основании операции.

На основе результатов

На основе выходных данных датчики Холла можно разделить по типу выхода:

  • аналоговый;
  • цифровой.

Датчики Холла с аналоговым выходом

Датчики Холла с аналоговым выходом содержат регулятор напряжения, элемент Холла и усилитель. Как следует из названия, выход такого типа датчика является аналоговым по своей природе и пропорционален напряженности магнитного поля и выходу элемента Холла.

Эти измерительные элементы имеют непрерывный линейный выход. Благодаря такому свойству они подходят для использования в качестве датчиков приближения.

Датчики Холла с цифровым выходом

Датчики эффекта Холла с цифровым выходом имеют только два выхода: «вкл.» и «выкл.». Эти датчики имеют дополнительный элемент — «триггер Шмитта», отличаясь этим от датчиков Холла с аналоговым выходом.

Именно триггер Шмитта вызывает эффект гистерезиса, и поэтому достигаются два различных пороговых уровня. Соответственно, выход всей цепи будет либо низким, либо высоким.

Переключатель эффекта Холла — один из таких датчиков. Эти датчики цифрового вывода широко используются в качестве концевых выключателей в станках с ЧПУ, трехмерных (3D) принтерах и позиционных блокировках в автоматизированных системах.

На основе операции

На основе операции датчики эффекта Холла можно разделить на два типа:

  • биполярный;
  • униполярный.

Биполярный датчик Холла

Как следует из названия, эти датчики требуют как положительных, так и отрицательных магнитных полей для своей работы. Положительное магнитное поле южного полюса магнита используется для активации датчика, а отрицательное магнитное поле северного полюса — для его отключения.

Униполярный датчик Холла

Как следует из названия, эти датчики требуют только положительного магнитного поля южного полюса магнита, чтобы быть активированными. Эта же полярность задействуется для выключения датчика.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу перестал гореть

Переворачиваю магнит другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видео работы

Как вы видите на видео,  мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

Где находится и как выглядит?

Эффект Холла нашел применение во многих системах автомобиля, таких как:

  • Определяет положение коленчатого вала (когда поршень первого цилиндра окажется в верхней мертвой точке такта сжатия);
  • Определяет положение распределительного вала (для синхронизации открытия клапанов в газораспределительном механизме в некоторых моделях современных ДВС);
  • В прерывателе системы зажигания (на трамблере);
  • В тахометре.

В процессе вращения вала двигателя датчик реагирует на величину прорезей зубцов, от чего образуется ток низкого напряжения, который поступает на коммутирующее устройство. Попадая в катушку зажигания, сигнал преобразуется в высокое напряжение, которое нужно для создания искры в цилиндре. Если датчик положения коленчатого вала неисправен, запуск мотора невозможен.

Подобный датчик стоит в прерывателе бесконтактной системы зажигания. Когда он срабатывает, происходит переключение обмоток катушки зажигания, что позволяет ей производить заряд на первичной обмотке и совершать разряд со вторичной.

На фото ниже показано, как выглядит датчик и где его устанавливают в некоторых автомобилях.

В трамблереДатчик коленвалаДатчик распредвалаДатчик тахометраДатчик холла в электродвигателе

Подключение больших электронагрузок

На выходе мощность датчика Холла очень низкая (10–20 мА), вследствие этого он напрямую контролировать высокие электронагрузки не может. Проблему решают достаточно просто: подключение делают с добавлением к устройству NPN-транзистора, через него стекает ток к выходу. Указанная деталь выступает приемником, когда она насыщенная, то активируется как переключатель. Транзистор заземляет выходной контакт, таким образом, замыкая его при повышении плотности потока выставленных значений для «вкл.».

Есть различные конфигурации транзисторного переключателя, но главное – устройством обеспечивается 2-тактный выход, позволяющий потреблять нужный ток для контроля больших нагрузок.

Датчик Холла

Конструктивные особенности

Наиболее эффективными материалами для изготовления датчика считаются полупроводники арсениды галлия и индия. Чаще прибор представляет собой пленку, толщина которой не превышает 10 мкм. Датчик имеет три клеммы:

  • питающая с входным напряжением 6В;
  • нулевой контакт;
  • выходная, с которой сигнал поступает на коммутатор.

Клемма, к которой подходит питание, широкая и занимает всю сторону прямоугольника. Выходная клемма обладает точечным электродом. В качестве нулевого контакта выступает общая точка. Так как при отсутствии магнитного поля на контактах остается небольшой сигнал, то для коррекции выходных данных применяется дифференциальный усилитель.

Микросхема наносится на подложку методом литографии, что позволяет повысить точность показаний. Обычно в различных приборах это применяется для проверки положения элементов механизма.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота).
    Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
    Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Проверка электронного датчика

При неправильной работе электронных датчиков, потребуется их демонтаж и проверка. Проведем проверку на примере биполярного цифрового датчика, использующегося в электронных измерительных приборах. Для начала расскажем, как устроен такой элемент:

  1. Первый его вывод является «+» или входом.
  2. Второй контакт является минусом.
  3. Третий контакт — импульсный выход.

Биполярный датчик Холла

Для проверки устройства потребуется собрать довольно простую схему. Нужными элементами для такой схемы будут:

  1. Светодиодная лампа 3 вольта.
  2. Резистор 1кОм в качестве токоограничителя.

Далее необходимо собрать все элементы в единую схему:

  1. К первой ножке датчика припаять анод лампы.
  2. Катод лампы соединить с выводом резистора.
  3. Второй вывод резистора соединить с третьей ножкой датчика.

Схема подключения датчика Холла

Потом потребуется блок питания на 5 вольт. Надо будет подключить датчик к этому блоку питания следующим образом:

  1. «+» блока к «+» элемента.
  2. «минус» блока соединяется с центральной ножкой.

Проверка магнитом датчика Холла

Исправный прибор должен пропустить через себя определенную величину напряжения. При этом сам светодиод должен включится. Затем нужно взять постоянный магнит и подвести его к устройству. При одной полярности лампа должна продолжать гореть, а после смены полярности магнита (необходимо просто перевернуть его) лампа потухнет. Также можно сделать дополнительный тест и узнать, на каком расстоянии происходит отключение лампы.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля. Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля.

Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции. Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

Малопотребляющие датчики Холла от Honeywell

В ассортименте одного из старейших производителей датчиков Холла – компании Honeywell – также присутствуют две модели малопотребляющих датчиков положения, отличающихся лишь чувствительностью.

Структурная схема (рисунок 11), технические характеристики (таблица 3) и принцип работы микросхем SM351 и SM353 во многом аналогичны рассмотренным выше микросхемам DRV5032 производства компании Texas Instruments. Для уменьшения энергопотребления питание на аналоговые узлы подается только во время измерений, продолжительность которых составляет 15 мкс. Коммутация питания осуществляется с помощью транзисторного ключа, управляемого таймером, содержащим тактовый генератор, счетчик, дешифратор и другие необходимые компоненты. Средняя частота измерений напряженности магнитного поля равна 10 Гц. При напряжении питания 1,8 В такой режим работы при типовом значении тока в режиме измерений около 1 мА позволяет уменьшить средний ток микросхемы до уровня, не превышающего 0,4 мкА.

Рис. 11. Структурная схема датчиков SM351 и SM353

Рис. 11. Структурная схема датчиков SM351 и SM353

Микросхемы SM351 и SM353 нечувствительны к полярности внешнего магнитного поля и имеют двухтактные выходы, позволяющие подключать их к микроконтроллеру без использования внешних подтягивающих резисторов. Оба прибора выпускаются в компактных корпусах SOT-23 и могут работать в широком диапазоне питающих напряжений (1,65…5,5 В) и температур (-40…85°С), что позволяет использовать их в автомобильной и промышленной электронике совместно с большинством наиболее популярных микроконтроллеров.

Таблица 3. Технические характеристики датчиков Холла производства Honeywell при напряжении питания 1,8 В

ПараметрыНаименование SM351 SM353
Тип выхода Двухтактный
Напряжение питания, В 1,65…5,5
Длительность активного режима, тип., мкс 15
Рабочая температура, °С -40…85
Корпус SOT-23
Частота опроса, тип., Гц 10
Чувствительность, мТл 0,7 1,4
Максимальный ток в активном режиме, тип., мА 1 0,8
Средний потребляемый ток, мкА 0,36 0,31

В отличие от изделий Texas Instruments, датчикам Honeywell необходима другая ориентация магнитного поля. Для корректной работы внешние магниты должны быть ориентированы полюсами к торцевой поверхности микросхем (рисунок 12), в то время как для датчиков Texas Instruments такое расположение магнитов попадает в «слепую» зону.

Рис. 12. Ориентация магнитного поля для датчиков SM351 и SM353

Рис. 12. Ориентация магнитного поля для датчиков SM351 и SM353

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков Холла

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков Холла

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Малопотребляющие датчики Холла производства Texas Instruments

В ассортименте TI на момент написания статьи присутствуют две модели датчиков с ультрамалым потреблением, взаимно дополняющие друг друга по своей функциональности. Ключевым отличием предлагаемых приборов является метод формирования выходного сигнала. Микросхемы DRV5032 фиксируют наличие магнитного поля с индукцией выше порогового значения, которое, в зависимости от модификации, может находиться в диапазоне 3,8…63 мТл (рисунок 6), в то время как датчики DRV5012 имеют функцию защелки, состояние которой меняется только при изменении полярности магнитного поля (рисунок 7). Это и определяет практическое назначение микросхем: DRV5032 предназначены, в первую очередь, для определения наличия каких-либо объектов, например, для фиксации открытия окна или двери, и могут работать с обычными двухполюсными магнитами, а DRV5012 – для измерения движения, например, ротора электродвигателя, и больше ориентированы на работу с многополюсными магнитами.

Рис. 6. Принцип работы датчиков DRV5032

Рис. 6. Принцип работы датчиков DRV5032

Рис. 7. Принцип работы датчиков DRV5012

Рис. 7. Принцип работы датчиков DRV5012

Упрощенная структурная схема датчиков DRV5032 показана на рисунке 8, а их технические характеристики приведены в таблице 1. В микросхеме интегрированы: стабилизатор напряжения, обеспечивающий необходимый режим работы всех узлов в широком диапазоне питающего напряжения, управляемый источник тока для измерительного элемента, дифференциальный операционный усилитель с компенсирующими цепями, устраняющими влияние температуры и напряжения смещения, присутствующего на выходе измерительного элемента, и управляющие выходами логические элементы. Из внешних компонентов для устойчивой работы прибора необходим лишь блокировочный керамический конденсатор емкостью не менее 0,1 мкФ, устраняющий переходные процессы в цепи питания, обусловленные импульсным характером потребляемого тока.

Рис. 8. Структурная схема микросхем DRV5032

Рис. 8. Структурная схема микросхем DRV5032

Таблица 1. Технические характеристики микросхем DRV5032

ПараметрыНаименование DRV5032DU DRV5032FA DRV5032FB DRV5032FC DRV5032FD DRV5032AJ DRV5032ZE
Чувствительность, мТл 3,9 4,8 4,8 4,8 4,8 9,5 63
Тип чувствительности к магнитному полю Униполярный Биполярный Биполярный Биполярный Униполярный Биполярный Биполярный
Тип выходов Двухтактный Двухтактный Двухтактный Открытый сток Двухтактный Открытый сток Открытый сток
Количество выходов 1, 2* 1 1 1 2* 1 1
Частота опроса, тип., Гц 20 20 5 20 20 20 20
Напряжение питания, В 1,65…5,5 1,65…5,5 1,65…5,5 1,65…5,5 1,65…5,5 1,65..5,5 1,65…5,5
Максимальный ток в активном режиме, тип., мА 2 2 2 2 2 2 2
Средний потребляемый ток, тип.**, мкА 1,3…2,3 1,3…2,3 0,54…1,06 1,3…2,3 1,3…2,3 1,3…2,3 1,3…2,3
Длительность активного режима, тип., мкс 55 55 55 55 55 55 55
Продолжительность измерения, тип., мкс 40 40 40 40 40 40 40
Рабочая температура, °С -40…85 -40…85 -40…85 -40…85 -40…85 -40…85 -40…85
Корпус SOT-23, X2SON SOT-23, X2SON SOT-23 SOT-23 X2SON SOT-23, X2SON SOT-23
* В зависимости от типа корпуса: SOT-23 – один выход (срабатывает при ориентации магнита южным полюсом к датчику); X2SON – два выхода (для северного и южного полюсов).
** При напряжении питания 1,8…5,0 В.

В зависимости от версии, микросхемы DRV5032 могут быть чувствительны к полярности внешнего магнитного поля. У биполярных версий выходное напряжение принимает низкий логический уровень при увеличении индукции магнитного поля выше порогового значения, независимо от полярности (рисунок 6). Это упрощает производство оборудования, поскольку в этом случае исключается операция позиционирования полюсов магнита. Униполярные версии (с суффиксами DU и FD) могут иметь два выхода: выход OUT1 переводится в состояние логического нуля при ориентировании магнита северным полюсом к прибору, а OUT2 – южным (рисунок 9). Возможность определения полярности магнитного поля расширяет функциональность конечных приложений, позволяя определять не только наличие объекта, но и его ориентацию. В микросхемах с суффиксом DU, выпускаемых в трехвыводном корпусе SOT-23, выход OUT1 отсутствует, и они позволяют определить лишь наличие магнита, ориентированного к датчику южным полюсом.

Рис. 9. Ориентация магнитного поля для датчиков DRV5032

Рис. 9. Ориентация магнитного поля для датчиков DRV5032

Тип выходов также зависит от версии прибора. В семействе присутствуют как микросхемы с двухтактным выходом, что дает возможность подключать выходы датчиков напрямую к портам микроконтроллера без использования внешних подтягивающих резисторов, так и приборы с выходом типа «открытый сток», позволяющие объединять выходы нескольких датчиков по схеме монтажного ИЛИ. Кроме этого, широкий диапазон напряжений питания 1,65…5,5 В позволяет использовать микросхемы DRV5032 с большинством популярных серий микроконтроллеров без использования дополнительных схем согласования уровней логических сигналов.

Для проведения измерений напряженности внешнего магнитного поля микросхемам DRV5032 достаточно в среднем 40 мкс. При этом все версии, кроме приборов с суффиксом FB, выполняют 20 измерений в секунду. Это позволяет при максимальном потребляемом токе 2 мА уменьшить величину его среднего значения до уровня 1,3…2,4 мкА. Еще большую экономичность обеспечивают микросхемы с суффиксом FB, у которых частота измерений уменьшена до 5 Гц, что позволяет довести средний ток потребления до уровня 0,54…1,6 мкА.

Структурная схема микросхем DRV5012 (рисунок 10) и их технические характеристики (таблица 2) во многом аналогичны DRV5032. Кроме рассмотренного выше метода формирования выходного сигнала, еще одной отличительной особенностью DRV5012 является возможность управления частотой измерений с помощью вывода SEL. При наличии низкого уровня на этом входе микросхема будет измерять напряженность магнитного поля 20 раз в секунду, а при установке логической единицы частота измерений увеличивается до 2,5 кГц. Это позволяет использовать данные приборы в приложениях как с медленными, так и с быстро протекающими процессами, а также оптимизировать энергопотребление системы в различных режимах работы.

Рис. 10. Структурная схема датчиков DRV5012

Рис. 10. Структурная схема датчиков DRV5012

Таблица 2. Технические характеристики микросхемы DRV5012

Параметры
Чувствительность, мТл 2
Тип выхода Двухтактный
Напряжение питания, В 1,65…5,5
Максимальный ток в активном режиме, тип., мА 2
Длительность активного режима, тип., мкс 55
Продолжительность измерения, тип., мкс 40
Рабочая температура, °С -40…85
Корпус X2SON
Частота опроса, тип., Гц 20 2500
Средний потребляемый ток при напряжении питания 1,8…5,0 В, тип., мкА 1,3…2,0 142…160

Как на Алиэкспресс найти и заказать нужные датчики по сходной цене и бесплатной доставкой

  1. Регистрируемся на сайте, для чего необходимо ввести свой email-адрес, фамилию и имя, а также придумать пароль. После этого необходимо подтвердить email-адрес, иначе ваш аккаунт будет заблокирован.

  2. Далее нужно заполнить адрес доставки. Делается это в своем профиле и обязательно латинскими символами.

  3. Слева, возле графы «Категории», нажимаем на ссылку «Смотреть все».

  4. Выбираем категорию «Автомобили и мотоциклы».

  5. Затем нажимаем на ссылку «Запчасти для авто».

  6. В левой части страницы выбираем категорию «Датчики».

  7. В поисковой строке вводим название требуемого датчика, к примеру датчик скорости.

  8. Ставим галочку напротив бесплатной доставки.

  9. Выбираем сортировку результатов по рейтингу продавца.

  10. Переходим на страницу описания товара, где выбираем количество, размер и цвет.

  11. Нажимаем на ссылку «Купить сейчас».

  12. Производим оплату заказа.

[spoiler title=»Источники»]

  • https://grand-electro.ru/baza-znanij/datchik-holla-naznachenie-i-princip-raboty.html
  • https://knigaelektrika.ru/poleznye-sovety/ustrojstvo-i-printsip-raboty-datchika-holla-shema-podklyucheniya-i-primenenie.html
  • https://AvtoTachki.com/chto-takoe-beskontaktnaya-sistema-zazhiganiya-avtomobilya/
  • https://www.RusElectronic.com/datchik-kholla/
  • https://220v.guru/elementy-elektriki/datchiki/princip-raboty-i-primenenie-datchika-holla.html
  • https://osensorax.ru/posiciya/datchik-holla
  • https://honda36.ru/sovety/datchik-holla-principialnaya-shema.html
  • https://www.asutpp.ru/chto-takoe-datchik-holla.html
  • https://ProFazu.ru/knowledge/electronics/datchik-holla.html
  • https://ElectroInfo.net/radiodetali/chto-takoe-datchik-holla.html
  • https://www.compel.ru/lib/92805

[/spoiler]